زمان تقریبی مطالعه: 22 دقیقه

تحلیل و ترکیب


تَحْلیلْ وَ تَرْکیب، نـام دو عمل در منطق و ریاضیات دوران باستان و دوران اسلامی. موضوع تحلیل کشف تعریف یک مفهوم یا کشف روش اثبات یک قضیه یا شیوۀ ترسیم یک شکل هندسی است و ترکیب عبارت است از ساختن مفهوم، اثبات قضیه، یا ترسیم شکل موردنظر، براساس آنچه از راه تحلیل به دست آمده است.

تحلیل و تركیب نزد منطقیان

 در آثار ارسطو تحلیل و تركیب تعریف نشده‌اند، اما وی در برخی از آثار خود به ویژگیهای تحلیل و تركیب اشاره می‌كند. مثلاً در «اخلاق نیكوماخس» (گ 1112a، سطرهای 20ff.) مرحلۀ آخر تحلیل را مرحلۀ اول تركیب می‌داند. در نوشته‌های منطقیان و ریاضی‌دانان دوران باستان و دوران اسلامی تحلیل و تركیب در مواضع گوناگون و به معانی مختلف به کار رفته است. یکی از این مواضع مقدمه‌های شروحِ «تحلیلهای نخستین» ارسطوست. فی‌المثل ابن زُرعه (د 398ق / 1008م) وجه تسمیۀ این کتاب را در این می‌داند که روش ارسطو در آن در همه جا تحلیل است (ص 100). تحلیل در اینجا به 3 معنی است: 1. تحلیل شکلهای دوم و سوم قیاس (شکلهای غیر تام) به شکل اول؛ 2. استخراج مقدمات و حد اوسط از راه تحلیل دو حد مطلوب به محمولات ذاتی، خاص، عَرَضی و مباین؛ 3. تحلیل هر قیاسی که با آن روبه‌رو شویم، به ضرب و شکل آن (همانجا). ابن سینا نیز مشتقات مصدر «حَلّ» را به معنای نخست به کار برده است. مثلاً در اشارات می‌نویسد: «باید بدانی که همۀ قضایای شرطی (شرطیات) به قضایای حَملی (حملیات) منحل می‌شوند (تَنحَلّ)» (1 / 123).
تحلیل در عین حال یکی از 4 روش جدلی است که عبارت‌اند از تقسیم، تعریف، برهان و تحلیل. بر اساس تعریف ابوالفرج ابن طیب (د 435ق / 1044م)، تحلیل، به این معنی، عبارت است از «بازبردن چیزی به مبادیِ آن، مثلاً بازبردن یک شخص به مبادی قریب و بعید او، یعنی بازبردن شخص به اعضای آلیِ او، مانند دست و پا؛ و باز بردن این مبادی به اجزاء متشابه آنها، مانند گوشت و استخوان، و باز بردن اجزاء متشابه به 4 خَلط که عبارت‌اند از خون، بلغم، صفرا و سودا؛ و باز بردن این 4 خلط به 4 عنصر که عبارت‌اند از آتش، هوا، آب و خاک» (ص 44). 
با این حال، تحلیل در آثار منطقی عموماً به معنای محدودتری به کار رفته است. در این آثار از دو گونه تحلیل سخن به میان آمده است: یكی تحلیلی كه موضوع آن «حدود» یا تعریفها ست (تحلیل حد) و دیگر تحلیلی كه در مورد قضایا صورت می‌پذیرد. تحلیل به معنای اول به این ترتیب انجام می‌گیرد كه مفهومی را كه در صدد تعریف آن هستیم، مفروض می‌گیریم و آن‌گاه، از راه تأمل در جنسی كه این مفهوم بدان تعلق دارد و تفاوتها و اشتراكاتش با دیگر انواعی كه تحت آن جنس قرار می‌گیرند، ذاتیات آن را جست‌ و جو می‌كنیم. تحلیل در كنار «تقسیم» یكی از دو شیوه‌ای است كه منطقیان قدیم بـرای رسیدن به تعاریف پیشنهاد ‌كرده‌اند. تركیب ــ كه عكس تحلیل و تقسیم است ــ به معنای برهم افزودن این ذاتیات و دست یافتن به تعریفی از مفهوم مورد نظر است (نصیرالدین، 425). گذشته از این، تحلیلِ حد به عنوان روشی برای آموزش علوم نیز به كار می‌رفته است و فی المثل جالینوس الصناعة الطبیۀ خود را به این شیوه تألیف كرده است (ص 273- 275). 
تحلیلی كه در مورد قضایا انجام می‌گیرد، عبارت است از رسیدن از نتایج برهان به مقدمات آن و ترکیب عبارت است از رسیدن از مقدمات به نتایج. خواجه نصیر الدین طوسی در اساس الاقتباس، تحلیل را بدین صورت تعریف می كند: «در قیاس چنان بود كه اول مطلوب وضع كنند و بعد از آن طلب مقدماتی كنند كه منتج مطلوب بود» (ص 425). جالینوس نیز تحلیل و تركیب را تقریبا به همین صورت تعریف می‌كند (همانجا). در نظر ارسطو، دشواری تحلیل در این است كه چون از مقدمات 
كاذب هم می‌توان نتیجۀ صادق گرفت، تحلیل همواره نمی‌تواند ما را به مقدمات درست برساند. اگر چنین نبود، یعنی اگر مقدمات و نتیجه متعاكس بودند‎، به عبارت دیگر اگر همان گونه كه صدق مقدمات مستلزم صدق نتیجه است، صدق نتیجه نیز مستلزم صدق مقدمات می‌بود، كار تحلیل آسان می‌شد. به این دلیل است كه به نظر ارسطو، تحلیل در مسائل ریاضی معمول‌تر است، زیرا بسیاری از تعاریف و قضایای ریاضی منعكس‌اند. دلیل این امر این است كه در ریاضیات چیزهایی كه ما مفروض می‌گیریم، هرگز اعراض نیستند، بلكه تعاریف‌اند‎. ارسطو این ویژگی را یكی از تفاوتهای بارز میان ریاضیات و استدلال جدلی می‌داند («تحلیلهای دومین»، گ 78a، سطرهای 7-15). ابن سینا نیز در كتاب برهان از منطق شفا، بی‌آنكه تعریف دقیقی از تحلیل و تركیب به دست بدهد، به تفاوتهایِ میان تحلیل (كه آن را تحلیل عكس می‌نامد) در علوم تعلیمی (ریاضیات) و در جدل می‌پردازد: در علوم تعلیمی محمولات مسائل از تعریفها، یا از آنچه، بر حسب تعریف، عَرَضِ لازم محسوب می‌شود، اخذ می‌گردد. این‌گونه چیزها عوارض ذاتی محسوب می‌شوند و همۀ آنها تعریف‌شده و معلوم‌اند و غالب آنها هم منعكس‌اند (یعنی شرط لازم و كافی‌اند‏، مثل اینكه مجموع زوایای مثلث دو قائمه است و اگر مجموع زوایای شكل مسطحی دو قائمه باشد، آن شكل مثلث است). پس «اگر چیزی مطلوب باشد و بخواهیم كه از راه تحلیل عكس برای آن قیاسی بیاوریم‎، از لواحق دو طرف آنچه دارای این شرطها باشد، می‌گیریم». ابن سینا تصریح می‌كند كه تركیب عكس تحلیل است. در تركیب، به عكس تحلیل، ریاضی‌دانان «از مسئله‌ای به مسئلۀ دیگر بالا می‌روند، بی‌آنكه به مقدماتی كه دارای وسط اند، خللی وارد كنند و از این مقدمات فراتر نمی‌روند، مگر آن‌گاه كه از راه قیاسهایی قریب به آنها روشنشان كرده باشند»؛ و به این دلیل كه «لواحق طرفین» در برهانهای ریاضی تعریف شده (محدود) و شناخته شده (معلوم) است، كار تحلیل و تركیب در برهانهای ریاضی هم كار ساده‌ای است (ص 198- 199). از عبارات ابن سینا چنین برمی‌آید كه در زمان او روشهای تحلیل و تركیب دو روش شناخته شدۀ ریاضی بوده است و شاید به این دلیل باشد كه ابن سینا تعریف كردن این دو روش را لازم نمی بیند.

تحلیل و ترکیب در ریاضیات

هرچند تعریف تحلیل و تركیب كلی است، به دلیلهای یاد شده، این دو روش عمدتاً در ریاضیات و به ویژه برای اثبات قضایا و ترسیم اشکال هندسی به‌کار می‌رود. در روش تحلیل، برای اثبات قضیه یا ترسیم شکل هندسی‌ای که خواص معینی داشته باشد، آن قضیه را اثبات شده، یا آن شکل را ترسیم شده فرض می‌کنیم و آن‌گاه می‌کوشیم تا از آن قضایایی، یا شکلی، ساده‌تر نتیجه بگیریم، تا اینکه سرانجام، یا به قضیه‌ای که پیش‌تر ثابت شده، یا به شکلی که راه ترسیمش معلوم است، یا به اصول هندسه برسیم. ترکیب عبارت از این است که از اصول یا قضایای اثبات شده آغاز کنیم و با برهم افزودن آنها سعی کنیم که قضیۀ مورد نظر را اثبات، یا شکل مطلوب را ترسیم کنیم.
در آثار بازمانده از ریاضی‌دانان و فیلسوفان یونانی، این دو شیوه به اختصار توضیح داده شده است. ابن ندیم دو كتاب به نامهای كتاب التركیب و كتاب التحلیل به اقلیدس نسبت داده (ص 326)، هرچند آن دو را منحول خوانده است. تا آنجا كه می‌دانیم، در منابع دیگر نیز چنین آثاری به نام اقلیدس نیامده است. پاپوس اسکندرانی (نیمۀ اول قرن 4م) در مقالۀ هفتم از «مجموعۀ ریاضی» خود این دو شیوه را به این صورت تعریف می‌کند: «تحلیل شیوه‌ای است که در آن از امر مطلوب آغاز می‌کنیم، به این معنی که آن را مسلّم می‌گیریم، و از طریق نتایجی که از آن جاری می‌شوند، به ترکیب چیزی که مسلم گرفته‌ایم، می‌رسیم... در ترکیب، به عکس، فرض می‌کنیم چیزی که از راه تحلیل ادراک شده است، هم اکنون موجود است و چون از این طریق، نتایج و علل آن را، بر حَسَب ترتیب طبیعی آنها، در اختیار داریم، این نتایج و علل را بر هم می‌افزاییم، تا سرانجام به ساختن شیء مطلوب موفق شویم» (II / 477؛ جونز، I / 82). تعریفی شبیه تعریف پاپوس در برخی از نسخه‌های خطی متن یونانی اصول اقلیدس در آغاز مقالۀ هفتم دیده می‌شود كه از اقلیدس نیست، بلكه از اضافات بعدی است (همو، II / 380-391). ‎همچنین پرکلس در شرح خود بر مقالۀ اول اصول اقلیدس از این دو شیوه یاد کرده است (نک‍ : راشد، «ریاضیات...»، 157). هِرون اسکندرانی (نیمۀ دوم قرن 1م) در عبارتی از شرح خود بر اصول اقلیدس‎ كه از راه شرح ابوالعباس نیریزی (قرن 3ق / 9م) به دست ما رسیده، دو شیوۀ تحلیل و تركیب را تعریف كرده است (نیریزی، 8).
از نوشتۀ پاپوس اطلاعات بیشتری در مورد تحلیل، به صورتی که در ریاضیات یونانی معمول بوده است، به دست می‌آید. وی از وجود حوزه‌ای خاص در ریاضیات به نام «حوزۀ تحلیل» (بنا بر ترجمۀ ور اکه)، و یا مجموعه‌ای از آثار ریاضی به نام «_reference» (بنا بر ترجمۀ جونز)، سخن می‌گوید و می‌نویسد که آثار متعلق به این حوزه پس از فراهم آمدن «اصول رایج»، تألیف شده است. احیاناً مراد او از این اصطلاح، گذشته از آثاری از نوع اصول اقلیدس، برخی دیگر از آثار ریاضی یونانی است كه در زمان او برای آموزش هندسه به كار می‌رفته است (جونز، II / 380). فارابی نیز می‌نویسد که «دانشمنـدان پیشیـنِ این‌رشتـه (هندسـه) ــ غیر از اقلیدس ــ در کتابهای خود راه تحلیل وترکیب را با هم آورده‌اند، اما اقلیدس مطالب کتاب خود را تنها بر اساس ترکیب تألیف کرده است» (ص 79). به گفتۀ پاپوس‎، روش تحلیل به كسی كه اصول هندسه را فراگرفته است، توانایی می‌دهد تا مسائل هندسی‌ای را كه به او عرضه می‌شود، حل كند (جونز، I / 82). پاپوس‎ پس از آنكه اصطلاحات تحلیل و تركیب را تعریف می‌كند،‎ می‌گوید كه تحلیل بر دو نوع است‎: در یكی هدف اثبات قضیه‌ای است و در دومی هدف ترسیم شكلی با خواص معلوم است. در حالت اول، فرض می‌كنیم كه قضیۀ مورد نظر اثبات شده باشد و آن‌گاه، از راه تحلیل، نتایج منطقی قضیه را جست‌ و جو می‌كنیم تا اینكه به چیزی كه پیش‌تر اثبات شده باشد، برسیم. در این حالت‎، فرایند تحلیل اثبات محسوب نمی‌شود، بلكه اثبات عبارت از این است كه راهی را كه در تحلیل پیموده‌ایم، از طریق تركیب بازگردیم (همو، I / 82-84). در حالتی كه تحلیل سرانجام به نتیجۀ كاذبی منجر شود، معلوم می‌شود كه حكم قضیۀ مورد نظر نادرست بوده است (هرچند پاپوس به این نكته تصریح نمی‌كند، پیداست كه بر اساس این تعریف‎، استدلال از طریق برهان خلف نیز نوعی تحلیل محسوب می‌شود). در صورتی كه هدف ترسیم شكلی با خصوصیات هندسی معین باشد، فرض می‌كنیم كه آن شكل معلوم باشد و سپس از راه تحلیلِ نتایج آن به امری مسلّم می رسیم‎؛ «و این همان است كه ریاضی‌دانان آن را «داده یا معلوم» می‌خوانند» (همو، I / 84). در این صورت نیز‎، برهان ساختن آن شكل، عكس عمل تحلیل است و هرگاه عمل تحلیل به نتیجۀ نادرستی منجر شود، معلوم می‌شود كه ترسیم مورد نظر (رسم شكلی با خاصیت مورد نظر) ناممكن است. از نوشتۀ پاپوس چنین برمی‌آید كه تحلیل روشی برای تجسس در حقایق ریاضی و كشف آنها بوده است. 
تا آنجا که می‌دانیم، به رغم این اشارات پراکنده، عمده آثار هندسی یونانیان به شیوۀ ترکیبی نوشته شده است و دانشمندان یونانی هیچ اثر جداگانه‌ای در موضوع تحلیل تألیف نکرده‌اند. از میان استثناها می‌توان از قضایای 1-5 مقالۀ سیزدهم كتاب اصول نام برد كه اقلیدس آنها را به هر دو روش تحلیل و تركیب اثبات كرده است. با این حال، از اشارات دیگر در منابع پیدا ست كه یونانیان از روش تحلیل برای تبدیل مسئلۀ مفروضی به مسئله‌ای كه حل آن ساده‌تر باشد، استفاده می‌كرده‌اند. مثلاً بقراط خیوسی (قرن 5ق‌م) مسئلۀ تضعیف مكعب را از راه تحلیل به مسئلۀ درج دو واسطه در میان دو طول معلوم تبدیل كرد (هیث، I / 244-245؛ نیز نك‍ : ه‍ د، تضعیف مكعب). همچنین ارشمیدس در رسالۀ «دربارۀ كره و استوانه» مسئلۀ تقسیم كره‌ای به دوبخش را به‌طوری كه نسبت میان حجمهای آنها معلوم باشد‏، به مسئلۀ تقسیم یك پاره خط تبدیل كرده بوده است. گذشته از این، به گفتۀ پاپوس، مجموعه‌ای از آثار ریاضی که وی آن را «گنجینۀ تحلیل» می‌خواند، کار تحلیل مسائل هندسی را آسان می‌کرده‌ است. در میان این آثار ــ که بسیاری از آنها از بین رفته است‌ــ نام کتابهایی چون معطیات، یا «داده‌ها»ی اقلیدس و مخروطات آپولونیوس نیز دیده می‌شود (جونز، همانجا) که متن آنها به دست ما رسیده است، و دربارۀ سایر این آثار نیز پاپوس فهرستی از قضایای آنها را به دست می‌دهد. با این حال، هیچ‌یك از این آثار مستقلاً در موضوع تحلیل بحث نمی‌كنند.
از دوران اسلامی، از قرن 3ق / 9م به بعد، آثاری باقی مانده است که یکسره به موضوع تحلیل و ترکیب اختصاص دارد. گذشته از ترجمۀ عربیِ نوشتۀ جالینوس که به دست حنین بن اسحاق و به سفارش محمد بن موسى، ریاضی‌دان قرن 3ق صورت گرفته است (حنین، 6)، و خود نشانۀ توجهی است که ریاضی‌دانان دوران اسلامی از همان آغاز به مسئلۀ ترکیب و تحلیل داشته‌اند (راشد، «فلسفه...»، II / 89)، ثابت بن قره (ه‍ م)، ریاضی‌دان قرن 3ق در رساله‌ای با عنوان فی التأتّی لاستخراج عمل المسائل الهندسیه ــ که به نام یکی از بزرگان زمان خود به نام ابن وهب نوشته است ــ بی آنکه نامی از روشهای تحلیل و ترکیب بیاورد، به ویژگی تركیبی و اصل موضوعی كتاب اصول اقلیدس اشاره كرده و گفته است كه اقلیدس به مقتضای این روش ناگزیر بوده است تا قضایایی را كه باید «مقدم می‌داشت، مؤخر بدارد و آنچه را باید مؤخر می‌داشت، مقدم بیاورد» (ص 743).
گذشته از رسالۀ‌ ثابت بن قره، نخستین اثر مفردی که در این موضوع به دست ما رسیده، رساله‌ای است از نوۀ او ابراهیم بن سنان بن ثابت بن قره، ریاضی‌دان قرن 4ق / 10م، به نام فی طریق التحلیل والترکیب فی المسائل الهندسیه. ابراهیم بن سنان می‌گوید كه كتاب خود را برای متعلمان نوشته است و این كتاب همۀ چیزهایی را كه برای حل مسائل هندسی لازم است، در بردارد. مؤلف نخست تحلیل و تركیب را تقریباً به همان شیوۀ پاپوس تعریف می‌كند و میان تحلیل در اثبات قضایا و ترسیم اشكال هندسی فرق می‌نهد و می‌گوید كه رسالۀ او مختص آن‌گونه مسائل تحلیلی است كه به ترسیم اشكال هندسی مربوط می‌شود (ص 101). ابراهیم بن سنان تركیب و تحلیل را دو فرایند می‌داند كه كاملاً معكوس یكدیگرند و می‌گوید كه اگر گاهی اختلافی میان تحلیل و تركیب مسئله‌ای دیده می‌شود، علت آن اختصاری است كه ریاضی‌دانان به كار برده اند (ص 97- 99). وی از پیشتازی خود در این زمینه آگاه است و نقصهای احتمالی كتابش را از همین‌جا می‌داند. ابن سنان مسائل هندسی را بر‌حسب قابل ترسیم بودن یا نبودن آنها و نیز كفایت فرضهای مسئله یا زیادی یا نقصان آنها، و نیز شمار جوابهای مسئله تقسیم مـی‌كنـد و بـه این دسته‌بنـدی مـی‌رسد: الف‌ـ مسائلـی كه همـۀ فرضهای لازم برای حل آنها داده شده است. این طبقه شامل دو دسته مسئله است: یكی مسائلی كه جواب دارند و دیگر مسائل بـی‌جواب. ب‌ـ مسائلـی كه حل آنها جز با تغییر برخی از فرضهایشان ممكن نیست. این طبقه شامل دو طبقۀ فرعی است: یكی مسائلی كه حل آنها با بحث همراه است و دیگر مسائل سیّال (مسائلی كه بیش از یك جواب دارند). طبقۀ فرعی اخیر نیز به مسائل سیال به معنی اخص و مسائل سیالی كه حل آنها با بحـث همـراه است، تقسیـم مـی‌شـود. ج ـ مسـائلـی كـه شمار مفروضات آنها بیش از حد لازم است. 
رسالۀ ابراهیم بن سنان تنها به حل مسائل هندسی اختصاص دارد؛ با این حال، وی به کاربرد روشهای تحلیل و ترکیب در علوم دیگر نیز اشاره می‌کند (ص 154؛ راشد، «ریاضیات»، 162). مفهوم وسیع تحلیل و ترکیب در رسالۀ فی التحلیل والترکیب ابن هیثم عرضه شده که مشروح‌ترین و اساسی‌ترین رساله‌ای است که از دانشمندان اسلامی در این موضوع باقی مانده است. در این رساله ابن هیثم نخست موضوع تحلیل را «دنبال کردن مقدمات و چاره‌اندیشی در رسیدن به آنها و یافتن راه ترتیب آنها» می‌داند (ص 231) و می‌گوید: همۀ دستاوردهای علوم ریاضـی از این راه به دست آمـده است. آن‌گاه می‌افزاید که ترکیب یا «قیاسی برهانی» عکس ترتیب است (ص 233).
تعریف ابن هیثم از تحلیل کلی است و بیشتر به تعریف منطقیان از «تحلیل حد» شباهت دارد. به نوشتۀ او، راه تحلیل این است که مطلوب را به کامل‌ترین صورت در نظر می‌گیریم و آن‌گاه در لوازم موضوع این مطلوب و جنس آن می‌اندیشیم و سپس در لوازم این لوازم، تا به یکی از داده‌های موضوع برسیم (همانجا). به این ترتیب، ارتباطی میان مبحث تحلیل و مبحث داده‌ها (معطیـات) به وجود مـی‌آید. در ترکیب، شـیء داده‌ شده را کـه از راه تحلیل بـه آن رسیده‌ایم، مفـروض می‌گیریم و سپس خاصه‌هایی را که در تحلیل به دست آورده‌ایم، به ترتیب عکس، به آن می‌افزاییم تا به این ترتیب به مطلوب برسیم (همانجا).
ابن هیثم تحلیل را یک فن خاص می‌داند و آن را «صناعة التحلیل» می‌نامد. این فن به ممارست و تمرین در اصول ریاضی و نیز به قوۀ حدس نیاز دارد (ص 233-235). چون هدف این صناعت کشف مجهولات در هر یک از علوم ریاضی است، و راه کشف مجهولات در هر یک از علوم با علوم دیگر متفاوت است، بنا براین، صناعت تحلیل به شمار شاخه‌های ریاضیات شاخه دارد. در هر یک از این شاخه‌ها نیز مسئله‌ای که تحلیل آن لازم است، یا علمی است، یا عملی. در مسائل علمی، هدف ما اثبات خاصیتی برای موضوع است، در حالی که در مسائل عملی هدف به دست آوردن شیئی است که خاصیت مورد نظر را داشته باشد (ص 235). آن‌گاه ابن هیثم مثالهایی از هر یک از مسائل علمی و عملی در هر یک از شاخه‌های ریاضیات (حساب، هندسه، نجوم و موسیقی) به دست می‌دهد. در مورد دو علم اخیر، ابن هیثم می‌گوید که مسائل عملیِ این دو علم به خود این علوم تعلق ندارند و در واقع مسائل حسابی یا هندسی هستند. اما مسائلی از این دو علم که در عُرف، عملی شمرده می‌شوند، مثل ساختن آلات رصد در نجوم یا تألیف عملی نغمه‌ها در موسیقی، به علوم نظری ریاضی تعلق ندارند (ص 235-237).
ابن هیثم مسائل عملی را به «محدود» و «غیر محدود» تقسیم می‌کند. مسائل محدود مسائلی هستند که حل آنها مشروط به قید شرط یا شروطی است، اما مسائل غیر محدود به قید شرط نیاز ندارند (ص 237- 239). از این نظر، تقسیم‌بندی او شبیه تقسیم‌بندی ابراهیم بن سنان است، با این تفاوت که وی مثالهایی از هر یک از این انواع در همۀ علوم ریاضی ذکر می‌کند. مسائل غیر محدود هم به سیال و غیر سیال تقسیم می‌شوند. سیال مسئله‌ای است که چند جواب داشته باشد و غیر سیال مسئله‌ای است که جز یک جواب نداشته باشد (ص 239).
بر خلاف بخش عملی، در بخش علمی تحلیل یک نوع بیشتر نیست، با این حال، هر مسئله را می‌توان به روشهای گوناگون تحلیل کرد، زیرا چنان‌که گفته شد، کار تحلیل نیازمند «حدس صناعی» است و حدس غالباً منجر به این می‌شود که به مسئلۀ داده شده چیزهایی بیفزاییم و تشخیص این افزودنیها وابسته به شخص تحلیلگر و مهارت او در این فن است (ص 243). 
در مسائل علمی، تحلیل یا به خاصیت داده‌شده‌ای منتهی می‌شود و یا به فرض محالی. در حالت اول، اگر راهی را که در تحلیل پیموده‌ایم از طریق ترکیب بازگردیم، به برهان مسئلۀ مورد نظر می‌رسیم. اما در حالت دوم، یعنی وقتی که تحلیل به یک فرض محال منجر شود، عمل تحلیل خود برهانی است از نوع برهان خلف: فالتحلیل المؤدی الی المحال هو برهان بالخلف على بطلان المعنی المبحوث عنه (ص 245).
به سبب پیوندی که در نظر ابن هیثم میان کار تحلیل و مسئلۀ معطیات یا داده‌ها وجود دارد، وی بخشی از رسالۀ خود را به این مفهوم اختصاص داده است. گذشته از این، رسالۀ جداگانه‌ای که دربارۀ داده‌ها یا معلومات با عنوان فی المعلومات نوشته، مکمل رسالۀ او در بارۀ تحلیل و ترکیب است. بخش عمدۀ رسالۀ ابن هیثم، مانند رسائل دیگری که در این موضوع تألیف شده است، به حل برخی از مسائل هندسی و حسابی از راه تحلیل و ترکیب اختصاص دارد.
تأکید ابن هیثم بر اهمیت حدس صناعی و تمرین در کار تحلیل نشان می‌دهد که در نظر او تحلیل شیوه‌ای نیست که خودبه‌خود، و به صورت «مکانیکی»، ما را به نتیجۀ مورد نظر برساند، بلکه این عمل جزء «حیَل» است، یعنی جزء فنونی است که به ابتکار نیاز دارد. با این حال، آثاری که ریاضی‌دانان دوران اسلامی در این مسئله پدید آورده‌اند، نشانۀ اهمیتی است که برای «فن ابداع» در ریاضیات قائل بوده‌اند. به همین دلیل، برخی از آثار خود را، بر خلاف شیوۀ رایج در ریاضیات یونانی، به شیوۀ تحلیلی تألیف کرده‌اند و در برخی دیگر، دو شیوۀ تحلیل و ترکیب را در کنار هم به کار گرفته‌اند. رسالۀ بی‌نام خیام دربـارۀ حل یک مسئلۀ هندسـی ــ که مصاحب آن را به حق «تحلیل یک مسئله» نام داده (ص 251) ــ نمونۀ آثار گروه اول است. ابن هیثـم در رساله‌های خـود فی المرایا المحرقة بالقطوع ــ «دربارۀ آینـه‌های سوزان سهموی» ــ و فـی المرایا المحرقـة بالدائـرة ــ «دربارۀ آینه‌های سوزان کروی» (مجموع الرسائل، حیدرآباد دکن، 1357ق) ــ به هر دو روش تحلیل و ترکیب عمل کرده است. برخی از ریاضی‌دانان دیگر نیز مسائلی را یکسره به روش تحلیل حل کرده بودند. از آن جمله است ابو سعد علاء بن سهل (قرن 4ق / 10م) که رساله ای در تحلیل مسائل هندسی داشته که اکنون از میان رفته است. ریاضی‌دان معاصر او به نام ابوعبدالله شَنّی در رسالۀ جداگانه‌ای به نام ترکیب مسائل التی حللها ابو سعد العلاء بن سهل این مسائل را به روش ترکیبی حل کرده است (راشد، «هندسه...»، 444-489)
هرچند ابن هیثم در فی التحلیل و الترکیب، نامی از جبر و کاربرد این دو روش در آن نمی‌برد، رسالۀ خیام اهمیت عمل تحلیل را در پیدایش معادلات جبری، به‌ویژه معادلات درجۀ سوم نشان می‌دهد. از این طریق بود که ماهانی، در حل مسئله‌ای هندسی که از ارشمیدس رسیده بود، «برای آسانی کار اصطلاحات جبریان را به کار برد و تحلیل او به معادله‌ای میان اعداد و توانهای دوم و سوم منجر شد» (خیام، «فی قسمة...»، 254-255، نیز نک‍ : «جبر...»، 117). خیام خود نیز در این رساله مسئله‌ای هندسی را از راه تحلیل به معادله‌ای جبری تبدیل می‌کند («فی قسمة»، 245). فرایندهای تحلیل و ترکیب در نظر خیام همان است که در آثار ریاضی‌دانان دیگر نیز دیده می‌شود: «فرض می‌کنیم که تحلیل ما را به امر معلومی برساند. آن‌گاه به همان شیوه ترکیب می‌کنیم» (همان‌، 239). مزیت بزرگ تبدیل مسائل هندسی، از راه تحلیل، به مسائل جبری این بود که نشان می‌داد هر مسئله به چه دسته‌ای از مسائل تعلق دارد، به این معنی که آیا با خط‌کش و پرگار حل‌شدنی است، یا برای حل آن به مقاطع مخروطی نیاز است.
جبردانان دیگر، مانند کرجی، نیز به اهمیت تحلیل و ترکیب توجه کرده‌اند و این دو شیوه را یکی از ابزارهای اصلی کار خود دانسته‌اند. این نکته را غیاث‌الدین جمشید کاشانی به این صورت بیان کرده است: «چه بسا که عبارت سؤال پیچیده است، به طوری که در بادی امر نحوۀ روابط میان مجهولات و معلومات آن را در نمی‌یابیم و گمان می‌بریم که از راه «مفتوحات» حل‌شدنی نیست، یا نمی‌توان آن را از راه جبر و مقابله ساده کرد، یا پس از ساده شدن هم به معادله‌ای منجر نمی‌شود، یا اگر بشود، معادله قابل حل نیست. در این حالت باید کسی که می‌خواهد آن را حل کند، از هر جهت در آن دقیق شود و عبارت آن را خلاصه کند و نسبت میان مجهولات و معلومات آن و خواصی را که میان آنها موجود است، و نیز لوازم آن را بشناسد تا کار به دست آوردن مجهول بر او آسان شود؛ و این امر را تحلیل و ترکیب می‌نامند. تحلیلگر باید چیره‌دست و به مقدمات حساب و دیگر قوانین آن آگاه باشد، و نیز ذهنی هوشمند و حدسی قوی و طبعی سلیم داشته باشد» (ص 489).
در قرن 11ق / 17م، توجه ریاضی‌دانان به «فن ابداع» در ریاضیات باعث شد که مسئلۀ تحلیل و ترکیب از نو در دایرۀ توجه ایشان قرار گیرد. به نظر ایشان، شیوۀ ترکیبی ریاضی‌دانان باعث شده‌ بود که خطوط اصلی اندیشۀ ایشان از نظر دور بماند (کنور، 9). نیوتن کوشید تا این دو شیوه را در حل دیگر مسائل نیز به کار برد (ه‍ د، تجربه، بخش II) و در فلسفۀ دکارت، تحلیل و ترکیب، البته به معنایی بسیار وسیع‌تر، به صورت شیوه‌ای برای حل همۀ مسائل فلسفی درآمد.

مآخذ

ابراهیم بن سنان، «فی طریق التحلیل والترکیب فی المسائل الهندسیة»، ابراهیم بن... (نک‍ : مل‍ ، راشد و بلوستا)؛ ابن زرعه، عیسى، منطق، به کوشش جیرار جیهامی و رفیق عجم، بیروت، 1994م؛ ابن سینا، الاشارات والتنبیهات، تهران، 1377ق؛ همو، الشفاء، برهان، به کوشش ابوالعلاء عفیفی، قاهره، 1375ق / 1956م؛ ابن ندیم، الفهرست؛ ابن‌هیثم، حسن، «فی التحلیل والترکیب»،«ریاضیات» (نک‍ : مل‍ ، راشد)؛ ابوالفرج ابن طیب، عبدالله، تفسیر کتاب ایساغوجی لفرفوریوس، به کوشش کوامی جیکی، بیروت، 1975م؛ ثابت بن قره، «فی التأتّی لاستخراج عمل المسائل الهندسیة»، «ریاضیات» (نک‍ : مل‍ ، راشد)؛ جالینوس، «الصناعة الطبیة»، «فلسفۀ ریاضی ابن هیثم» (نک‍ : مل‍ ، راشد)؛ حنین بن اسحاق، رسالة فی ذکر ما ترجم من کتب جالینوس، به کوشش مهدی محقق، تهران، 1379ش؛ خیام، «جبر و مقابله»، «خیام، ریاضی‌دان» (نک‍ : مل‍ ، راشد و وهاب‌زاده)؛ همو، «فی قسمة ربع‌الدائرة»، همان؛ غیاث الدین جمشید کاشانی، مفتاح الحساب، به کوشش نادر نابلسی، دمشق، 1977م؛ فارابی، احصاء العلوم، ترجمۀ حسین خدیو جم، تهران، 1348ش؛ مصاحب، غلامحسین، حکیم عمر خیام به عنوان عالم جبر، تهران، 1339ش؛ نصیر الدین طوسی، اساس الاقتباس، به کوشش محمد تقی مدرس رضوی، تهران، 1326ش؛ نیریزی، فضل، «شرح المقالة الثانیة من کتاب اقلیدس فی الاصول»، اصول (نک‍ : مل‍ ، اقلیدس)؛ نیز:

Aristotle,Analytica posteriora;id, Ethica Nicomachea; Euclid, Elementa,with commentary of Al-Nairizii, Frankfurt, 1997, Part II(1); Heath, Th., A History of Greek Mathematics, Oxford , 1921; Jones, A., introd. and commentary on Book 7 of the Collection… of Pappus of Alexandria, New York etc., 1986; Knorr, W.R., The Ancient Tradition of Geometric Problems, Boston, 1986; Pappus of Alexandria, La Collection mathématique, tr. P. Ver Eecke, Paris, 1933; Rashed, R., Geometry and Dioptrics in Classical Islam, London, 2005; id, Les Mathématiques infinitésimales du IX e au XI e siècle, London, 2002, vol. IV; id, »La Philosophie des mathématiques d’Ibn al-Haytham: II, Les connus«, Mélanges de l’Institut dominicain d’études orientales du Caire 1993, vol. XXI; id and H. Bellosta, Ibrāhīm ibn Sinān: Logique et Géométrie au X e siècle, Leiden, 2000; id and B. Vahabzadeh, Al-Khayyām mathématicien, Paris , 1999.

حسین معصومی همدانی

آخرین نظرات
کلیه حقوق این تارنما متعلق به فرا دانشنامه ویکی بین است.